

GaAlAs Hermetic Infrared Emitting Diode Type OP234

Features

- · Very high speed
- Enhanced temperature range
- Mechanically and spectrally matched to the OP800 and OP830 series devices
- Significantly higher power output than GaAs at equivalent drive currents
- TO-46 hermetically sealed package
- Case is electrically connected to the cathode

Description

The OP234 device is an 850 nm gallium aluminum arsenide infrared emitting diode mounted in hermetically sealed package.

Ab so lute Maxi mum Rat ings $(T_A = 25^{\circ} C \text{ un less oth er wise noted})$

Reverse Voltage
Continuous Forward Current
Peak For ward Cur rent (2 µs pulse width, 0.1% duty cy cle)
Stor age Tempera ture Range65° C to +150° C
Operating Temperature Range65° C to +125° C
Lead Sol dering Tempera ture [1/16 inch (1.6 mm) from case for 5 sec. with sol dering
iron]
Power Dissipation
Notes:

- (1) RMA flux is recommended. Duration can be extended to 10 seconds max. when flow soldering.
- (2) Derate linearly 2.0 mW/° C above 25° C.
- (3) E_{e(APT)} is a measurement of the average radiant intensity emitted by the IRED within a cone formed from the IRED chip to an aperture. The aperture of diameter 0.250" is located a distance of 1.429" from the flange (measurement plane) to the aperture plane (parallel to the measurement plane) along the optical and mechanical axis. The cone formed is a 30° cone. The radiant intensity is not necessarily uniform within the measured area.
- (4) Measurement made with 100μs pulse measured at the trailing edge of the pulse with a duty cycle of 0.1% and an I_F = 100 mA.

INFRARED Baitting

Type OP234

Electrical Characteristics ($T_A = 25^{\circ}$ C un less oth er wise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TESTCONDITIONS
E _{e(APT)}	Apertured Radiant Incidence	5.0			mW/cm ²	$I_F = 100 \text{ mA}^{(3)(4)}$
Po	Power Output		17		mW	I _F = 100 mA
V_{F}	Forward Voltage			2.0	V	$I_F = 100 \text{ mA}^{(4)}$
I _R	Reverse Current			100	μΑ	V _R = 2.0 V
λр	Wavelength at Peak Emission		850		nm	I _F = 10 mA
В	Spectral Bandwidth Half Power Points		50		nm	I _F = 10 mA
Δλρ/ΔΤ	Spectral Shift with Temperature		+0.30		nm/°C	I _F = Constant
θнр	Emission Angle at Half Power Points		60		Deg.	I _F = 100 mA
t _r	Rise Time		15		ns	I _{F(PK)} = 100 mA,
t _f	Fall Time		10		ns	PW = 10 μs, D.C. = 10%